Special Sessions

-

Brice Ivira
Broadcom Corp.
Amir Mortzawi
Univ. of Michigan
Location
406AB
Abstract

The session presents advancements in design, model, simulation and experimental results of Lithium Niobate-based SAW and lamb wave resonators to address sub-5 GHz applications and beyond 6GHz up to 19 GHz. The material use different cuts of Lithium Niobate to address different applications. A technique to place poles and zeros during a filter design phase is presented.

Technical Papers
Abstract
Tu3E-1: A 19GHz Lithium Niobate Acoustic Filter with FBW of 2.4%
Liuqing Gao, Yansong Yang, Songbin Gong
Liuqing Gao, Univ. of Illinois at Urbana-Champaign
(13:40 - 14:00)
Abstract
Tu3E-2: 5.4GHz Acoustic Delay Lines in Lithium Niobate Thin Film with 3dB Insertion Loss
Ruochen Lu, Yansong Yang, Steffen Link, Songbin Gong
Ruochen Lu, Univ. of Illinois at Urbana-Champaign
(14:00 - 14:20)
Abstract
Tu3E-3: An X-Band Lithium Niobate Acoustic RFFE Filter with FBW of 3.45% and IL of 2.7dB
Yansong Yang, Liuqing Gao, Songbin Gong
Yansong Yang, Univ. of Illinois at Urbana-Champaign
(14:20 - 14:40)
Abstract
Tu3E-4: Surface Acoustic Wave Resonators Using Lithium Niobate on Silicon Carbide Platform
Shibin Zhang, Ruochen Lu, Hongyan Zhou, Steffen Link, Yansong Yang, Zhongxu Li, Kai Huang, Xin Ou, Songbin Gong
Shibin Zhang, Chinese Academy of Sciences
(14:40 - 15:00)
Abstract
Tu3E-5: Synthesis and Realization of Chebyshev Filters Based on Constant Electromechanical Coupling Coefficient Acoustic Wave Resonators
Shu-Yuan Tseng, Chin-Chung Hsiao, Ruey-Beei Wu
Shu-Yuan Tseng, National Taiwan Univ.
(15:00 - 15:20)

-

Frank E. van Vliet
TNO, Netherlands
Christian Waldschmidt
Ulm Univ.
Location
408A
Abstract

Only due to persistent progress in phased-array beamforming technologies and techniques did phased-arrays move from the defense and space domains into a multitude of applications, including much lower-cost commercial applications. In this session, progress is reported on digital as well as analog implementations. Aspects including wideband beamforming, mutual coupling, calibration and tracking are covered, even addressing flexible phased-array sheets.

Technical Papers
Abstract
Th1F-1: Design Considerations and FPGA Implementation of a Wideband All-Digital Transmit Beamformer with 50% Fractional Bandwidth
Rui Ma
Sravan Pulipati, MERL
(08:00 - 08:20)
Abstract
Th1F-2: FPGA-Based 2-D FIR Frost Beamformers with Digital Mutual Coupling Compensation
Viduneth Ariyarathna, Ashira L. Jayaweera, Chamira U.S. Edussooriya, Chamith Wijenayake, Leonid Belostotski, Arjuna Madanayake
Sravan Pulipati, Florida International Univ.
(08:20 - 08:40)
Abstract
Th1F-3: In-situ Self-Test and Self-Calibration of Dual-Polarized 5G TRX Phased Arrays Leveraging Orthogonal-Polarization Antenna Couplings
Ahmed Nafe, Abdurrahman H. Aljuhani, Kerim Kibaroglu, Mustafa Sayginer, Gabriel M. Rebeiz
Ahmed Nafe, Univ. of California, San Diego
(08:40 - 09:00)
Abstract
Th1F-4: Scalable, Deployable, Flexible Phased Array Sheets
Matan Gal-Katziri, Austin Fikes, Florian Bohn, Behrooz Abiri, M. Reza Hashemi, Ali Hajimiri
Matan Gal-Katziri, Caltech
(09:00 - 09:20)
Abstract
Th1F-5: 28GHz Active Monopulse Networks with Amplitude and Phase Control and -30dB Null-Bandwidth of 5GHz
Hyunchul Chung, Qian Ma, Gabriel M. Rebeiz
Hyunchul Chung, Univ. of California, San Diego
(09:20 - 09:40)