A 2D Model of a Triple Layer Electromagnetic Heat Exchanger with Porous Media Flow

Electromagnetic heat exchangers are complex devices involving multiple physical processes and requiring extensive experimental developments. Effectiveness of their operation means efficient conversion of electromagnetic energy into useful mechanical work. In this paper, we present a 2D numerical model of a porous-media-based electromagnetic heat exchanger with three layers. We first report a double S- power response curve when no fluid flow is considered. Comparing the developed curve with the one produced by analytical approach, we find both the curves in satisfactory agreement. After validation, we introduce Darcy’s flow in porous medium, and calculate the power absorbed by the fluid and overall thermal efficiency of the heat exchanger. It is shown that the net power absorbed by the coolant flowing in the porous media is mainly dependent on fluid velocity and outlet temperature. When operating on the middle branch of the double S-curve, total thermal energy collected by the fluid is high, but overall thermal efficiency of the device is low because of the slow movement of the fluid.